The minimal number of generators of an invertible ideal
نویسندگان
چکیده
All rings in this paper are commutative with unity; we will deal mainly with integral domains. Let R be a ring with total quotient ring K. A fractional ideal I of R is invertible if II−1 = R; equivalently, I is a projective module of rank 1 (see, e.g., [Eis95, Section 11.3]). Here, I−1 = (R : I) = {x ∈ K |xI ⊆ R}. Moreover, a projective R-module of rank 1 is isomorphic to an invertible ideal. (We use the term “ideal” in the sense of an integral ideal). We denote the minimal number of generators of an ideal I of R by νR(I). If R is a Dedekind domain, equivalently, a domain in which each nonzero ideal is invertible, then νR(I) ≤ 2 for each nonzero ideal I; moreover, I is strongly 2generated, in the sense that one of the generators can be an arbitrary nonzero element of I. A Dedekind domain is characterized as an integrally closed Noetherian domain of Krull dimension 1. It turns out that of these three properties, Krull dimension 1 always implies that an invertible ideal is 2generated, as was shown by Sally and Vasconcelos in [SV74]. R. Heitmann generalized this fact to arbitrary finite Krull dimension: an invertible ideal of an n-dimensional domain R is strongly n + 1-generated (see Section 3). Moreover, this result is sharp, in the sense that for each n ≥ 1 there exists an n-dimensional domain R, even Prüfer, with an invertible ideal requiring n+ 1 generators: see the examples in Sections 3, 4 and 5. The general problem of determining the minimal number of generators for an invertible ideal of a domain was first studied by Gilmer and Heinzer in [GH70]. Among other fundamental results, they provide sufficient conditions for an invertible ideal to have the property that it can be generated by two elements. The question whether a finitely generated ideal of a Prüfer domain can be always be generated by 2 elements was first raised by Gilmer around 1964 [Swa84]. Recall that a Prüfer domain is an integral domain in which each
منابع مشابه
Ideal of Lattice homomorphisms corresponding to the products of two arbitrary lattices and the lattice [2]
Abstract. Let L and M be two finite lattices. The ideal J(L,M) is a monomial ideal in a specific polynomial ring and whose minimal monomial generators correspond to lattice homomorphisms ϕ: L→M. This ideal is called the ideal of lattice homomorphism. In this paper, we study J(L,M) in the case that L is the product of two lattices L_1 and L_2 and M is the chain [2]. We first characterize the set...
متن کاملThe Dual of a Strongly Prime Ideal
Let R be a commutative integral domain with quotient field K and let P be a nonzero strongly prime ideal of R. We give several characterizations of such ideals. It is shown that (P : P) is a valuation domain with the unique maximal ideal P. We also study when P^{&minus1} is a ring. In fact, it is proved that P^{&minus1} = (P : P) if and only if P is not invertible. Furthermore, if P is invertib...
متن کاملNew methods for constructing shellable simplicial complexes
A clutter $mathcal{C}$ with vertex set $[n]$ is an antichain of subsets of $[n]$, called circuits, covering all vertices. The clutter is $d$-uniform if all of its circuits have the same cardinality $d$. If $mathbb{K}$ is a field, then there is a one-to-one correspondence between clutters on $V$ and square-free monomial ideals in $mathbb{K}[x_1,ldots,x_n]$ as follows: To each clutter $mathcal{C}...
متن کاملComputing the minimal number of equations defining an affine curve ideal-theoretically
There is an algorithm which computes the minimal number of generators of the ideal of a reduced curve C in affine n-space over an algebraically closed field K, provided C is not a local complete intersection. The existence of such an algorithm follows from the fact that given d ∈ N, there exists d ∈ N, such that if a is a height n−1 radical ideal inK[X1, . . . ,Xn], generated by polynomials of ...
متن کاملOn Property (A) and the socle of the $f$-ring $Frm(mathcal{P}(mathbb R), L)$
For a frame $L$, consider the $f$-ring $ mathcal{F}_{mathcal P}L=Frm(mathcal{P}(mathbb R), L)$. In this paper, first we show that each minimal ideal of $ mathcal{F}_{mathcal P}L$ is a principal ideal generated by $f_a$, where $a$ is an atom of $L$. Then we show that if $L$ is an $mathcal{F}_{mathcal P}$-completely regular frame, then the socle of $ mathcal{F}_{mathcal P}L$ consists of those $f$...
متن کامل